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Irreversible and reversible modes of operation of deterministic ratchets
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We discuss a problem of optimization of the energetic efficiency of a simple rocked ratchet. We concentrate
on a low-temperature case in which the particle’s motion in a ratchet potential is deterministic. We show that
the energetic efficiency of a ratchet working adiabatically is bounded from above by a value depending on the
form of ratchet potential. The ratchets with strongly asymmetric potentials can achieve ideal efficiency of unity
without approaching reversibility. On the other hand we show that for any form of the ratchet potential a set of
time protocols of the outer force exists under which the operation is reversible and the ideal value of efficiency
n=1 is also achieved. The mode of operation of the ratchet is still quasistatic but not adiabatic. The high
values of efficiency can be preserved even under elevated temperatures.

DOI: 10.1103/PhysRevE.63.021107 PACS nuner05.70.Ln, 05.40-a, 87.10+e

. INTRODUCTION with £2(t)=260u, whered=KT is the energetic temperature.
Here F(x) is a force corresponding to the ratchet potential
The general interest to the thermodynamics of livingand f(t)="f,+f,(t) is a sum of an external see-saw force
things has motivated huge interest to the investigation of,(t) with zero mean and of a constant fortg, against
simple (probably oversimplified in comparison with biologi- which the useful work is done by pumping the particles up-
cal systems, but still very nontriviaimodels of thermody- hill. The evolution of the particles’ distributiop(x,t) is then
namical systems, which are very nonlinear and are driveglescribed by a Fokker-Planck equation,
very far from equilibrium. The stochastic or deterministic
ratchet models present an extremely popular class of physi-  dp(x,t) 4 [ _dp(x.t)
cal models under investigatigri—18. The energetic effi- gt dx IX
ciency is one of the simplesand deepesthermodynamical
characteristics of such systems and is now under extensiwghere U(x)=V(x)—f(t)x is the overall potential and
investigation 3,5—17. The simplest model, a rocked ratchet, = 6u is the diffusion coefficient. The simplest case of a
corresponds to a particle moving in a spatially asymmetrigatchet device is delivered by a periodic piecewise-linear po-
potential under the influence of the external field, either petential
riodic or stochastic. Under such conditions, the system gen-
erates directed current, which can flow against an additional V(x)=[VX/a for0<x=a
constant external potential difference, thus producing useful V(L—x)/(L—a) fora<x<L.
work by, e.g., charging a battery. In what follows we discuss
a question of optimizing an efficiency of a ratchet and dis-Under a very slowly changing field, the system can simply
cuss the low-temperaturdeterministi¢ limit [19,20), as the  be described as a rectifiénonlinear elementwhose *“volt-
simplest one for the optimization problem. We show, that theampere” characteristics can easily be calculated in an adia-
efficiency of a ratchet working as a rectifier is limited by batic approximation, as it was done, e.g., in Réfl. The
some finite valuen= 7, depending on the exact form of corresponding expression is given in the Appendix A. In the
the ratchet potential. Taking ratchet potentials, which ardimiting case of deterministic operatideorresponding t@
rather flat on one side and extremely steep on another side; O or to the situation, when keeping the form of the ratchet
of a saw tooth leads t@,,,—1. On the other hand, under constant, one increases its size in a way that M and
judicious choice of the protocol of the external force, even-V/(L —a) stay constartthe current through the ratchet as a
tually any cold or macroscopic ratchet can achieve the idedunction of the outer field reads
value of »=1. We show that such protocol is not unique.
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Moreover, we discuss how the large values of efficiencies 0 for—Vi(L-a)<f<Vl/a
can be preserved even in the systems under finite tempera- | = L—a a \!
+ herwise.
ture. y72 fTVi(L—a)  f-Via otherwise
Il. A RATCHET AS A RECTIFIER Note that the deterministic current, E@), is simply given

Describing ratchet systems in a time-dependent externdiroughl =1/7, where

field one typically starts from a Langevin equatidl,

x=pu[F(X)+f(t)]+ &), (1)

where u is the mobility of the particles, and(t) is a is the time necessary for a particle to traverse the period of a
S-correlated Gaussian Langevin force with zero mean andatchet. For—V/(L—a)<f<V/a the particle is trapped, and

L—a a

f+Vv/i(L—a) f—-V/a

T=W
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the deterministic current vanishes: we refer to this interval as For the force f;, which is symmetrically distributed

the mobility gap. Note that the adiabatic approximation holdsaround zero, i.e., for the cade =f_, the maximal effi-

if the characteristic times of varying of the external field areciency will be achieved in the case whepis taken near the

much larger tharr. gap’s midpoint(shifted to the right by an infinitesimally
The general approach to energetic efficiency of a systersmall amountand the amplitude of; is equal to one-half of

rectifying adiabatic field is discussed in some detail in Refthe gap’s width:

[21]. In our case it is enough to mention that the useful work,

i.e., the work done against the constant fofgg@er unit time _V(L—-2a) VL 0

is equal toA,=— I(fy+f;)fo and that the work of the omax2a(L—a)’ M 2a(L-—a)’

outer forcef, equalsl(fy+f;)f4, so that the efficiency of ) ) o

the ratchet is given by which leads to the maximal value of the efficiency
. eym=|1—2a/L|. (8)
[(fo+fq1)fo

n=— =, (6)  Note that the values df, nacandf; .. correspond to a stag-

I(f0+ fl)fl e

nation situation when the mean currérjtist vanishes. Thus,
under any symmetric outer force, the efficiency of the ratchet
where the mean values are taken over the probability distriis bounded by a value smaller than unity, except for the
bution p(f,) of f; (for periodic or stochastic forcger over extreme casesa=L or a=0. In this case the appliance
a period (for periodic ones The energetic efficiency of a shows the piecewise-linear volt-ampere characteristics of an
ratchet is not an intrinsic property of the device, but depend#eal diode. For example, f@=L one gets
on the protocol of the external force. Thus, judicious choice
of such protocols can improve the efficiencies strongly. 0 forf<Vv/L

Finding the exact upper bound of such an integral expres- H(H)= w(f—VIL) otherwise. ©
sion as Eq.(6) under arbitrary changes df, and of the
distribution of f,, is not an easy task even for relatively The casea=0 corresponds to a symmetric situatidin:
simplel(f) functions. Under deterministic operatiotue to  —f.
the existence of the mobility gap arouiek0) this optimi- The use of asymmetric external force leads to the efficien-
zation can follow by the comparison of different situations.cies that are somewhat higher, but still not arbitrarily close to
To do this we note that the current, E@) is a monoto-  unity. Taking bothf,,;, andf, to lie within the gap, near to
nously growing function of everywhere except of the gap its lower boundaryf,;,~f,~—V/(L—a), and f.. being
—V/(L—a)<f<V/a. Let us consider the case of an exter- slightly higher than the upper boundary of the gap, we get
nal force f(t)="fqo+fy(t), with a mean valuef, and a that the value of efficiency tends to
piecewise-constant forck;(t) with zero mean taking only
two valuesf, and —f_. The value off(t) then switches __—fo  ViL-a)
between the value$,,,=fo—f_ and f,=fo+f.. Let us 7= F e fo_ Via+Vi(L—a)
discuss different choices of,,, fo, andf ., with respect to
the gap boundaries. If both extreme values lie within theln this case the forcd, is strongly asymmetric: it takes
mobility gap, no current flows and no useful work is pro- almost all the time the small negative value off _, and
duced. Thus at least one of the valuks,, or f i, must lie  switches from time to time to a positive value fof , which
outside of the gap. The positive work is produced if theequals the gap’s width. Note that for the caseL/2, one
currentl has a sign opposite to one ff. This cannot be the shifts the value off, and f,,, to the right boundary of the
case if bothf;;, andf . lie on one side of the mobility gap. gap and take$,,;, slightly smaller than its left boundary, so
Thus, if, e.9.,f >0 lies outside of the gag i, lies either  that in generaly,,=maxa/L,(L—a)/L}=1/2+|1/2—a/L|.
within the gap or on its other side. In this case, if the currentintroducing the asymmetry parameter through a=L(1
flows through the system, it always flows in the direction of + €)/2, one gets that the maximal efficiency for a symmetric
f1, and thusl (fo+f,)f; is always positive. By comparing outer force isnsm=| €[, while the absolute maximum of the
different situations it is easy to convince oneself that undeefficiency (for strongly asymmetric forgereads 7,.,=1/2
a>L/2 the highest efficiencies will be achieved whén  +|e|/2.
<0 andf i, still lies within the gap(taking f i, outside the The fact that the adiabatic efficiencies do not achieve
gap will reduce useful work and increase logsand the unity is easy to explain within the picture of deterministic
value off .0 lies outside of the gap. Havirfg fixed, we  motion. Let us consider meandering dichotomic external
see that the efficiency monotonously decreases when allowerce switching between the valuesf_ andf, . The par-
ing for largerf, values, since the functioh(f,+f;)f; al-  ticle in such a system is moving to the right whieaf, and
ways grows faster witlii, than|I(fo+f,)f,| does. Thus the gets stuck otherwisgt never steps backwards, cf. REE8]).
optimization takes place for the situation whép,, ap- The highest efficiency is achieved under stalling condition,
proaches the upper bound of the gap from above. Similaso that forf=f . one side of the saw toottsay, the left one
considerations can be applied to a general case of an exterril the lengtha) gets practically horizontal. The velocity of a
force f(t), which is bounded by the valuds,;, and f .. particle is infinitesimally small when passing this side; the

=all. (10
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overall passing time diverges and the current vanishes. Onfo—f_]. In the optimal mode of operation, both velocities
the other hand, the motion of the particle along the other siddave to vanish, from which the values fyf and f, follow:
of the ratchet, which is rather steep, follows with a finite
velocity and is thus connected with finite losses, showing
that the overall process is irreversible. The heat produced fo=
when sliding down the steep side equ&@)s=V[(L—a)/a L(1—€?)
+1] per particle and does not vanish whanr-L. On the
other hand, the maximal useful work per particle done duringrpe positive work is produced ff,<0. For example, a tem-
the time the particle traverses the period of the potential ii)orary symmetric situation§=0) would correspond td,
given [for the case of the forces, E7)] by A=V[L(2a  —+2v/| (1-€?). The mode of operation in this case is re-
—L)J/[2a(L—a)] and grows whem— L, due to the possi- yersible: the work per particle per period of the field stays
bility to increase the amplitude of the external force. Thefiite when increasing the period, while the losses vanish. In
value of n=A/(A+Q) then approaches unity not becausecontrast with a rather robust adiabatic situation of the previ-
the losses vanish but because the warrows, i.e.without  oys section, achieving high efficiency in a reversible regime
reaching reversibility On the other hand, as we proceed t0 3ssumes fine tuning of the temporal parameters of the field:
show, the reversible operation is also possible for eaclne high efficiencies follow as a kind of a nonlinear reso-
ratchet. nance. In Appendix B, a way for finding such protocols for
the potentials of arbitrary form is discussed.
IIl. THE REVERSIBLE MODE OF OPERATION Note that the solution of Eq11) follows under the initial
conditionx(0)=0. For different initial conditions the proto-

The analysis of the previous section gives an idea on how| of the outer force has to be chosen in a different vty
to reduce the losses: as soon as the particle crosses the aggxst shifted in timg On the other hand, for a wide class of
of the potential, the see-saw force must change its sign, sgrotocols, the particle gets resynchronized with the field
that the velocity of the particle’s falling down stays infini- ithin finite time under eventually any initial position. For
tesimally small. The losses will be minimized while the use-example, our rectangular meandering protocol for the
ful work stays finite. This will correspond to the reversible piecewise-linear ratchet belongs to this class: if the particle
mode of operation. o _ _ starts att=0 with some coordinat&>0, it will reach the

Let us discuss a periodic outer fielderiod T) and con-  pointx=L earlier in time and will stay there until the field is
centrate on the situation when the particle’s displacement p&jyitched in the opposite direction, thus resynchronizing its
period of the outer force corresponds to the period of theyosition. Another solution uses the possibility to synchronize
ratchet forcel.. Note that this situation never leads to adia- the external field with the instantaneous state of the system,
batic behavior. The useful work per period of the outer forcefor example, to change the field’s direction exactly at the
is constant and is given b= foL. Thus, for a given ratchet moment when the particle crosses the cusp of the ratchet
force F(x) we are to look for a protocdftime dependenge potential. This kind of synchronization corresponds to an en-
of fi(t), which minimizes the heaQng/flvz(t)dt, gineering solution widely used since it was first introduced
where the particle’s velocity (t) =x(t) is a periodic solu- by a boy called Humphrey Potter into a Newcomen’s steam

2V(e— o) 2V(1-6)
-—— " and f,=

=— 2
L(1—€?) (12

tion of a nonlinear differential equation engine in 1713(see, e.g., Ref[22] as an excellent old
source. Humphrey Potter connected the cock regulating the
X(1)= u[F(xo+X(1)+ fo+ F(1)] (17)  access of steam into the cylinder with one of the moving

parts of the engine and thus was able to increase the velocity
of the operation by the factor of 2. This is exactly the kind of
e - synchronization implied, e.g., by the mode of operation of a
condition (say_ Xo=0). The eff|C|_ency of the ratchey n?odel-B ratchet of Ref.13]; in a biological system one can
=AI(A+Q) wil th_ef ?pproach unity when the he@tvan-  jpagine that a particle catalyzes the process leading to trig-
ishes. SinceQ=pu " "v*(t)T, the heat can vanish only for gering of the external field, when it approaches an active
those protocols for which*(t) tends to zero, i.e., only under center located near the cusp of the potential. Note that the
quasistatic conditions. systems that are synchronized in this sense can also be called
For example, confining ourselves to piecewise-lineaithe systems with localized transitiofshich spatial aspect is
ratchet potentials and piecewise-constant fofgft), one  strongly emphasized in Ref13]). Although the one-particle
finds that the duration of corresponding subperindandt,  appliances with localized transitions may stay reversible
(t1+1t,=T) must be equal to the time necessary for a pareven under finite temperaturgast like the appliance of Ref.
ticle to pass the distanca=L(1+¢€)/2 and L—a=L(1 [13] doey, this way of achieving high efficiencies is not
—€)/2, respectively. Let us introduce a temporal asymmetrygeneral; the Humphrey Potter's solution seems to be ideal
parameters of the external force so that=T(1+5)/2.  only in one-particle appliances, since it is impossible to syn-
Supposing that the mean value ©f(t) is zero, we getf = chronize the external forc&lescribed by a single variable
=f,(1+6)/(1-6). According to Eq.(11), during the first  with a state of a system of several particles described in a
subperiod t; the particle moves with the velocity;  multidimensional phase space. Thus, either these particles
=u[—2V/L(1+€)+fo+ T, ], while during the second sub- must be connected in such a way that they build a macro-
period t, it moves with the velocityv,=u[2V/L(1—€) scopic system described by a single effective variable, or the

(being Eq.(1) without the noise terinfor a given initial
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triggering must take place when a considerable amount ofhus, the way to increase the efficiency of the systee, to
particles gather in the vicinity of the active center. make Q small compared t®) is to takeU/6>1, i.e., to
make the system macroscopic or cold. Note that if the typical
value of the external field is given, the saw-tooth height
IV. OPERATION UNDER NOISY CONDITIONS: can be made large compared ddby introducing flat, long
SIZE VS TEMPERATURE steps, thus leading to high efficiencies. On the other hand,
The resonant character of the reversible mode of opera{[-he dependenge of on size or temperature is wegkllows
a power law with a very small exponent of 1/60 that the

tion makes it very sensitive to perturbations, e.g., to the thers o _ .
mal noise. Thus, for achieving ideal efficiencies, the systenflidh efficiencies can be only achieved on rather macroscopic

must be taken to be cold or macroscopic. In what follows weScales. Note also that at given size and temperature the
make some estimates, how cold or how macroscopic it has tomallest losses are achieved under finite velocity, i.e. under
be. the finite-time mode of operation. The typical period of the
Imagine a particle situated at0 at a lower cusp of the field will scale ast~L/v~u~*L*%6~ 15U~ ** and diverges
saw toothxx=0. Statistical fluctuations connected with ther- underg—0 or L—o.
mal motion lead to the fact that during the time necessary for We have discussed the situation when at the beginning of
a deterministic trajectory to pass the apex of potentiat at the period the particles were localized at the lower cusp of a
=a, in approximately one-half of all realizations, the particle saw tooth, neax=0. Thus, in order to allow for periodic
still does not reach the apex, so that half of the trajectories doperation, one has to give the particles enough time to collect
not contribute to useful work at all. In the other half of the into a narrow region near the bottom of the potential after
realizations the particle has already passed the apex, so thapérforming the cycle of operatiofwhich corresponds to a
moves with nonzero velocity and contributes to losses. period of the external field To do this one can add to the
Let us vary the protocol slightly in a way that warrants time necessary for making the way from the top to the bot-
that a large amount of particles crosses the apex of the pqom of the potential an additional amount of time necessary
tential when the force is showing in the correct direction. Ony, thermalize, and to reduce the state to its initial width. For
the other hand, the mean-square velocity of the patrticles is t@xample, one can add at the end of each period an amount of
be kept as small as possible to reduce losses. In order e to during which the see-saw force is switched to zero.

increase the probab_ility tha; the particle_ starting at Zerorpan each new period will start from a distribution of par-
crosses the apex during the time the force is showing, say, tto

the right, let us increasg by the amountAt necessary to lcles localized in a spaﬂal_domam of W'd”‘_’l”(a“.”.“
guarantee crossing the top even when the distribution of thgenf[ered ak=~0. T_he magmtudg of _the_maX|maI efficiency
particle’s position gets broadened by diffusion. Let us Con_achleved under this procedure is still given by EtB).
sider a ratchet whose asymmetry facéds not extremegnot
too near to zero or unijy so that both slopes are of the same
order of magnitude|F (x)|=U/L. The lengths of both sides V. CONCLUSIONS

are of the order of magnitude df. During the timet, Driven ratchets belong to the class of strongly nonlinear

=alv, of trave.l along the. Ieft pgrt of the saw 'FOOt,h With_ 4 and strongly nonequilibrium thermodynamical systems, so
constant velocity ;, the distribution of the particle’s posi- that the problem of optimizing their efficiencies is not

tions broadens to the widtw=\Dt,. Thus, waiting an ad- simple. We have considered the simplest situation of a cold
ditional imeAt=W/v, assures that the apex will be crossed 5, macroscopic ratchet and discussed its efficiency under dif-
in almost all realizations. If we start from a well-localized forent conditions. Since any finite-velocity mode of opera-
situation, then At=\Da/v/v,=\Dav;¥*. Having tion leads to inevitable losses, the highest efficiencies are
crossed the apex the particles slide along the steep part of thghjeved in quasistatic regime. We have shown that effi-
saw tooth with the velocity(=uF=uU/L. The overall ciency of a ratchet as a rectifier, i.e., a device transforming
losses during the first half-period of outer force are of thean adiabatically slowly changing outer field with zero mean
order ofv?t; /u+viAt/u~v,alu+viJDav; ¥4 u . After  into a continuous directed motion, is bounded by some value
most of the particles have passed the apex, the outer field ig,_ . depending on the geometry of the ratchet and the form
switched to the opposite direction, and the particles movef the outer force. For ratchets consisting of extremely steep
along the other side of the saw tooth with small veloeily  and of almost flat partg,,..—1, the system approaches ideal
Let us takev, andv, to be of the same order of magnitude: efficiency in the irreversible mode of operation. On the other
vi=v,=v. For the overall losses we geQ=BuvlL/u hand, we have also shown, that for a wide clasgnofiran-
+CupU2L"%¥2DY2, =372 (whereB and C are some numerical dom) protocols of the outer force a reversible mode of op-
factors depending on the form of the ratohethich expres- eration is possible, under which the ideal efficiency ipf
sion is minimized undes ~ U *59Y®L1®, This leads by the =1 is also achieved. This mode corresponds to a quasistatic
order of magnitude t®@=U**4Y5, while the useful work is but not adiabatic operation. It is worth noting that such a
of the order ofA=fyL=U, so that synchronized ratchet resembles much more a well-
constructed engine, than an appliance extracting work from a
noise; in macroscopic systems high efficiencies of reversible
1—9=(U/6) 5, (13 operation are preserved also at elevated temperatures.
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APPENDIX A: THE VOLT-AMPERE CHARACTERISTICS
OF A RATCHET

In an adiabatic regime the curreinthrough the ratchet is
given by a stationary solution of the Fokker-Planck equation,

Eq. (2):

dp(x)

d
D—gx T HPX) UK=L,

(A1)

with D= n 6. The formal solution of this equation reads
pP(x)=exd —U(x)/6]

X p(O)—(I/,uH)foxexp(U(x’)lﬁ)dx’ . (A2)

The currentl and the integration constap(0) follow then

C_

PHYSICAL REVIEW E 63 021107

For #—0 one of the exponential terms is positive and large
for f>V/a and forf<—V/(L—a), and both of them tend to

gero for —V/(L—a)<f<V/a, in which case the current

r?nishes. Thus, in this limiting case, E@) follows. Note

at the same limiting behavior emerges when, keeping the
form of the ratchet constant, one increases its size in a way
that bothV/a andV/(L —a) stay constant.

APPENDIX B: THE BEST PROTOCOL FOR A GIVEN
RATCHET

Let us discuss the procedure of finding good protocols for
reversible operation for a given ratchet potential of general
form. Let us fix some differentiable, monotonously growing
function é(7), 0= 7<1, so that{(0)=0 and{(1)=1. Note
that under these conditions an inverse functid#), exists,
which is also a monotonously growing, differentiable func-
tion. Let us now considef as the particle’s relative position
within the period of potentidl and r as the reduced time, so
thatx(7T)=L&(7). Let us now look for a protocol that re-
alizes the correspondingt) motion, and increase the period
of the field. From Eq(11) one then gets

L dé¢
f(Tr)=—FIL&N]—fo+ —

uT dr (B1)

from the additional conditions representing the periodicity

p(L)=p(0) and the overall normalizatioffi5p(x)dx=1,
leading to

exp—U(L)/6

I=p6 exp—U(L)/6—-1

(JOde’ exp— U(x’)/&)

X

L L
jdx’ epr(x’)/&)—f dx" exp—U(x')/ 6
0 0

-1

(A3)

X Jx dx” expJ(x")/ 6
0

The solution for the piecewise-linear potential, Eg), is
given by the following expression:

|-1_ L—a a
=V L—a) T Via

; exp{—[V+f(L—a)]/6}—1
[f+V/(L—a)]?

(f—V/a)?

exd —(V—fa)/g]—1
[ f—Via

exp{—[V+f(L—a)]/6}—1)2
B f+V/i(L—a)

x{exd —(V—fa)/0]
—exp—[V+f(L—a)]/e)} L.

- exp[—(V—fa)/e]—l]

(A4)

Equation (B1) allows finding good protocols for a given
ratchet or good ratchets for given protocol. Requiring the
zero mean value of the see-saw force one gets

- 1 L L 1 dr
fo——fo F[Lf(T)]dT"‘ﬁ—ﬁ_j F(Lg)d_gdf- (B2)

0

Since the positive work requirely,<<0, each protocol, for
which

dr

le(Lf)—d§>O
0

dé (B3)

tends to be a good one when performed slowly enough.
Since the losses ar®=u 1f{v?(t)dt, and sinceu(t)
=(L/T)&'(t/T), one has

L2 1
Q=M’l?fo[§’(7)]2dr- (B4)

The corresponding integral is supposed to converge

1
K=f (& (n]2dr<o. (B5)
0

The exact behavior of this function is not very important.
The efficiency of the corresponding engine will then be

|fol

7 o[+ kLT (BO)
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which tends to unity when the period of the external forcepositive get in the integral the higher weight than those

grows. Thus, each reversible functi@iir) fulfilling Egs.

where it is negative and sindeéF(Lg)dgzO. This class of

(B3) and (B5) delivers a good protocol for a reversible op- protocols does not cover the whole set of possible protocols,

eration.

For example,
monotonously increasing bounded functiay(x). Then
taking 7(£) = [§9[ F(L{)1dZ/ 5[ F (L) 1d¢ guarantees that
féF(Lg)dT/d§d§>0, since the regions wherE(L¢) is

since many other protocols, like piecewise-linear functions

let us take an arbitrary positive, 7(¢)=a+ BO[F(LE)]é (wherea, >0, and® is a Heavi-

side step-functionwill also lead eventually to an ideal mode
of operation. A protocol for the piecewise-linear ratchet dis-
cussed in Sec. Il corresponds just to this class.
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