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Irreversible and reversible modes of operation of deterministic ratchets

I. M. Sokolov
Theoretische Polymerphysik, Universita¨t Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg im Breisgau, Germany

~Received 29 September 2000; published 24 January 2001!

We discuss a problem of optimization of the energetic efficiency of a simple rocked ratchet. We concentrate
on a low-temperature case in which the particle’s motion in a ratchet potential is deterministic. We show that
the energetic efficiency of a ratchet working adiabatically is bounded from above by a value depending on the
form of ratchet potential. The ratchets with strongly asymmetric potentials can achieve ideal efficiency of unity
without approaching reversibility. On the other hand we show that for any form of the ratchet potential a set of
time protocols of the outer force exists under which the operation is reversible and the ideal value of efficiency
h51 is also achieved. The mode of operation of the ratchet is still quasistatic but not adiabatic. The high
values of efficiency can be preserved even under elevated temperatures.
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I. INTRODUCTION

The general interest to the thermodynamics of livi
things has motivated huge interest to the investigation
simple~probably oversimplified in comparison with biolog
cal systems, but still very nontrivial! models of thermody-
namical systems, which are very nonlinear and are dri
very far from equilibrium. The stochastic or determinis
ratchet models present an extremely popular class of ph
cal models under investigation@1–18#. The energetic effi-
ciency is one of the simplest~and deepest! thermodynamical
characteristics of such systems and is now under exten
investigation@3,5–17#. The simplest model, a rocked ratche
corresponds to a particle moving in a spatially asymme
potential under the influence of the external field, either
riodic or stochastic. Under such conditions, the system g
erates directed current, which can flow against an additio
constant external potential difference, thus producing us
work by, e.g., charging a battery. In what follows we discu
a question of optimizing an efficiency of a ratchet and d
cuss the low-temperature~deterministic! limit @19,20#, as the
simplest one for the optimization problem. We show, that
efficiency of a ratchet working as a rectifier is limited b
some finite valueh5hmax, depending on the exact form o
the ratchet potential. Taking ratchet potentials, which
rather flat on one side and extremely steep on another s
of a saw tooth leads tohmax→1. On the other hand, unde
judicious choice of the protocol of the external force, eve
tually any cold or macroscopic ratchet can achieve the id
value of h51. We show that such protocol is not uniqu
Moreover, we discuss how the large values of efficienc
can be preserved even in the systems under finite temp
ture.

II. A RATCHET AS A RECTIFIER

Describing ratchet systems in a time-dependent exte
field one typically starts from a Langevin equation@1#,

ẋ5m@F~x!1 f ~ t !#1j~ t !, ~1!

where m is the mobility of the particles, andj(t) is a
d-correlated Gaussian Langevin force with zero mean
1063-651X/2001/63~2!/021107~6!/$15.00 63 0211
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with j2(t)52um, whereu5kT is the energetic temperature
Here F(x) is a force corresponding to the ratchet potent
and f (t)5 f 01 f 1(t) is a sum of an external see-saw for
f 1(t) with zero mean and of a constant forcef 0, against
which the useful work is done by pumping the particles u
hill. The evolution of the particles’ distributionp(x,t) is then
described by a Fokker-Planck equation,

]p~x,t !

]t
5

]

]x S D
]p~x,t !

]x
1mp~x,t !

]

]x
U~x,t ! D , ~2!

where U(x)5V(x)2 f (t)x is the overall potential andD
5um is the diffusion coefficient. The simplest case of
ratchet device is delivered by a periodic piecewise-linear
tential

V~x!5H Vx/a for 0,x<a

V~L2x!/~L2a! for a,x<L.
~3!

Under a very slowly changing field, the system can sim
be described as a rectifier~nonlinear element! whose ‘‘volt-
ampere’’ characteristics can easily be calculated in an a
batic approximation, as it was done, e.g., in Ref.@1#. The
corresponding expression is given in the Appendix A. In t
limiting case of deterministic operation@corresponding tou
→0 or to the situation, when keeping the form of the ratch
constant, one increases its size in a way that bothV/a and
V/(L2a) stay constant# the current through the ratchet as
function of the outer fieldf reads

I 5H 0 for 2V/~L2a!, f ,V/a

mS L2a

f 1V/~L2a!
1

a

f 2V/aD 21

otherwise.
~4!

Note that the deterministic current, Eq.~4!, is simply given
throughI 51/t, where

t5m21F L2a

f 1V/~L2a!
1

a

f 2V/aG ~5!

is the time necessary for a particle to traverse the period
ratchet. For2V/(L2a), f ,V/a the particle is trapped, and
©2001 The American Physical Society07-1
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I. M. SOKOLOV PHYSICAL REVIEW E 63 021107
the deterministic current vanishes: we refer to this interva
the mobility gap. Note that the adiabatic approximation ho
if the characteristic times of varying of the external field a
much larger thant.

The general approach to energetic efficiency of a sys
rectifying adiabatic field is discussed in some detail in R
@21#. In our case it is enough to mention that the useful wo
i.e., the work done against the constant forcef 0 per unit time
is equal toAu52 I ( f 01 f 1) f 0, and that the work of the
outer forcef 1 equalsI ( f 01 f 1) f 1, so that the efficiency of
the ratchet is given by

h52
I ~ f 01 f 1! f 0

I ~ f 01 f 1! f 1

, ~6!

where the mean values are taken over the probability di
bution p( f 1) of f 1 ~for periodic or stochastic forces! or over
a period ~for periodic ones!. The energetic efficiency of a
ratchet is not an intrinsic property of the device, but depe
on the protocol of the external force. Thus, judicious cho
of such protocols can improve the efficiencies strongly.

Finding the exact upper bound of such an integral exp
sion as Eq.~6! under arbitrary changes off 0 and of the
distribution of f 1, is not an easy task even for relative
simple I ( f ) functions. Under deterministic operation~due to
the existence of the mobility gap aroundf 50) this optimi-
zation can follow by the comparison of different situation
To do this we note that the current, Eq.~4! is a monoto-
nously growing function off everywhere except of the ga
2V/(L2a), f ,V/a. Let us consider the case of an exte
nal force f (t)5 f 01 f 1(t), with a mean valuef 0 and a
piecewise-constant forcef 1(t) with zero mean taking only
two valuesf 1 and 2 f 2 . The value off (t) then switches
between the valuesf min5f02f2 and f max5f01f1 . Let us
discuss different choices off min , f 0, and f max with respect to
the gap boundaries. If both extreme values lie within
mobility gap, no current flows and no useful work is pr
duced. Thus at least one of the values,f max or f min , must lie
outside of the gap. The positive work is produced if t
currentI has a sign opposite to one off 0. This cannot be the
case if bothf min and f max lie on one side of the mobility gap
Thus, if, e.g.,f max.0 lies outside of the gap,f min lies either
within the gap or on its other side. In this case, if the curr
flows through the system, it always flows in the direction
f 1, and thusI ( f 01 f 1) f 1 is always positive. By comparing
different situations it is easy to convince oneself that un
a.L/2 the highest efficiencies will be achieved whenf 0
,0 and f min still lies within the gap~taking f min outside the
gap will reduce useful work and increase losses! and the
value of f max.0 lies outside of the gap. Havingf 0 fixed, we
see that the efficiency monotonously decreases when al
ing for larger f 1 values, since the functionI ( f 01 f 1) f 1 al-
ways grows faster withf 1 than uI ( f 01 f 1) f 0u does. Thus the
optimization takes place for the situation whenf max ap-
proaches the upper bound of the gap from above. Sim
considerations can be applied to a general case of an ext
force f (t), which is bounded by the valuesf min and f max.
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For the force f 1, which is symmetrically distributed
around zero, i.e., for the casef 15 f 2 , the maximal effi-
ciency will be achieved in the case whenf 0 is taken near the
gap’s midpoint ~shifted to the right by an infinitesimally
small amount! and the amplitude off 1 is equal to one-half of
the gap’s width:

f 0,max5
V~L22a!

2a~L2a!
, f 1,max5

VL

2a~L2a!
, ~7!

which leads to the maximal value of the efficiency

hsym5u122a/Lu. ~8!

Note that the values off 0,maxand f 1,maxcorrespond to a stag
nation situation when the mean currentĪ just vanishes. Thus
under any symmetric outer force, the efficiency of the ratc
is bounded by a value smaller than unity, except for
extreme casesa5L or a50. In this case the applianc
shows the piecewise-linear volt-ampere characteristics o
ideal diode. For example, fora5L one gets

I ~ f !5H 0 for f ,V/L

m~ f 2V/L ! otherwise.
~9!

The casea50 corresponds to a symmetric situation,f→
2 f .

The use of asymmetric external force leads to the effici
cies that are somewhat higher, but still not arbitrarily close
unity. Taking bothf min and f 0 to lie within the gap, near to
its lower boundary f min'f0'2V/(L2a), and f max being
slightly higher than the upper boundary of the gap, we
that the value of efficiency tends to

h.
2 f 0

f max2 f 0
.

V/~L2a!

V/a1V/~L2a!
5a/L. ~10!

In this case the forcef 1 is strongly asymmetric: it takes
almost all the time the small negative value of2 f 2 , and
switches from time to time to a positive value off 1 , which
equals the gap’s width. Note that for the casea,L/2, one
shifts the value off 0 and f max to the right boundary of the
gap and takesf min slightly smaller than its left boundary, s
that in generalhmax5max$a/L,(L2a)/L%51/21u1/22a/Lu.
Introducing the asymmetry parametere through a5L(1
1e)/2, one gets that the maximal efficiency for a symmet
outer force ishsym5ueu, while the absolute maximum of th
efficiency ~for strongly asymmetric force! readshmax51/2
1ueu/2.

The fact that the adiabatic efficiencies do not achie
unity is easy to explain within the picture of determinist
motion. Let us consider meandering dichotomic exter
force switching between the values2 f 2 and f 1 . The par-
ticle in such a system is moving to the right whenf 5 f 1 and
gets stuck otherwise~it never steps backwards, cf. Ref.@18#!.
The highest efficiency is achieved under stalling conditio
so that forf 5 f 1 one side of the saw tooth~say, the left one
of the lengtha! gets practically horizontal. The velocity of
particle is infinitesimally small when passing this side; t
7-2
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IRREVERSIBLE AND REVERSIBLE MODES OF . . . PHYSICAL REVIEW E 63 021107
overall passing time diverges and the current vanishes.
the other hand, the motion of the particle along the other s
of the ratchet, which is rather steep, follows with a fin
velocity and is thus connected with finite losses, show
that the overall process is irreversible. The heat produ
when sliding down the steep side equalsQ5V@(L2a)/a
11# per particle and does not vanish whena→L. On the
other hand, the maximal useful work per particle done dur
the time the particle traverses the period of the potentia
given @for the case of the forces, Eq.~7!# by A5V@L(2a
2L)#/@2a(L2a)# and grows whena→L, due to the possi-
bility to increase the amplitude of the external force. T
value of h5A/(A1Q) then approaches unity not becau
the losses vanish but because the workA grows, i.e.,without
reaching reversibility. On the other hand, as we proceed
show, the reversible operation is also possible for e
ratchet.

III. THE REVERSIBLE MODE OF OPERATION

The analysis of the previous section gives an idea on h
to reduce the losses: as soon as the particle crosses the
of the potential, the see-saw force must change its sign
that the velocity of the particle’s falling down stays infin
tesimally small. The losses will be minimized while the us
ful work stays finite. This will correspond to the reversib
mode of operation.

Let us discuss a periodic outer field~periodT) and con-
centrate on the situation when the particle’s displacement
period of the outer force corresponds to the period of
ratchet forceL. Note that this situation never leads to ad
batic behavior. The useful work per period of the outer fo
is constant and is given byA5 f 0L. Thus, for a given ratche
force F(x) we are to look for a protocol~time dependence!
of f 1(t), which minimizes the heatQ5*0

Tm21v2(t)dt,

where the particle’s velocityv(t)5 ẋ(t) is a periodic solu-
tion of a nonlinear differential equation

ẋ~ t !5m@F„x01x~ t !…1 f 01 f ~ t !# ~11!

~being Eq. ~1! without the noise term! for a given initial
condition ~say x050). The efficiency of the ratcheth
5A/(A1Q) will then approach unity when the heatQ van-
ishes. SinceQ5m21v2(t)T, the heat can vanish only fo
those protocols for whichv2(t) tends to zero, i.e., only unde
quasistatic conditions.

For example, confining ourselves to piecewise-line
ratchet potentials and piecewise-constant forcef 1(t), one
finds that the duration of corresponding subperiodst1 andt2
(t11t25T) must be equal to the time necessary for a p
ticle to pass the distancea5L(11e)/2 and L2a5L(1
2e)/2, respectively. Let us introduce a temporal asymme
parameterd of the external force so thatt15T(11d)/2.
Supposing that the mean value off 1(t) is zero, we getf 2

5 f 1(11d)/(12d). According to Eq.~11!, during the first
subperiod t1 the particle moves with the velocityv1
5m@22V/L(11e)1 f 01 f 1#, while during the second sub
period t2 it moves with the velocityv25m@2V/L(12e)
02110
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1f02f2#. In the optimal mode of operation, both velocitie
have to vanish, from which the values off 0 and f 1 follow:

f 052
2V~e2d!

L~12e2!
and f 15

2V~12d!

L~12e2!
. ~12!

The positive work is produced iff 0,0. For example, a tem
porary symmetric situation (d50) would correspond tof 1
562V/L(12e2). The mode of operation in this case is r
versible: the work per particle per period of the field sta
finite when increasing the period, while the losses vanish
contrast with a rather robust adiabatic situation of the pre
ous section, achieving high efficiency in a reversible regi
assumes fine tuning of the temporal parameters of the fi
the high efficiencies follow as a kind of a nonlinear res
nance. In Appendix B, a way for finding such protocols f
the potentials of arbitrary form is discussed.

Note that the solution of Eq.~11! follows under the initial
conditionx(0)50. For different initial conditions the proto
col of the outer force has to be chosen in a different way~at
least shifted in time!. On the other hand, for a wide class
protocols, the particle gets resynchronized with the fi
within finite time under eventually any initial position. Fo
example, our rectangular meandering protocol for
piecewise-linear ratchet belongs to this class: if the part
starts att50 with some coordinatex.0, it will reach the
point x5L earlier in time and will stay there until the field i
switched in the opposite direction, thus resynchronizing
position. Another solution uses the possibility to synchron
the external field with the instantaneous state of the syst
for example, to change the field’s direction exactly at t
moment when the particle crosses the cusp of the rat
potential. This kind of synchronization corresponds to an
gineering solution widely used since it was first introduc
by a boy called Humphrey Potter into a Newcomen’s ste
engine in 1713~see, e.g., Ref.@22# as an excellent old
source!. Humphrey Potter connected the cock regulating
access of steam into the cylinder with one of the mov
parts of the engine and thus was able to increase the velo
of the operation by the factor of 2. This is exactly the kind
synchronization implied, e.g., by the mode of operation o
model-B ratchet of Ref.@13#; in a biological system one ca
imagine that a particle catalyzes the process leading to
gering of the external field, when it approaches an act
center located near the cusp of the potential. Note that
systems that are synchronized in this sense can also be c
the systems with localized transitions~which spatial aspect is
strongly emphasized in Ref.@13#!. Although the one-particle
appliances with localized transitions may stay reversi
even under finite temperatures~just like the appliance of Ref
@13# does!, this way of achieving high efficiencies is no
general; the Humphrey Potter’s solution seems to be id
only in one-particle appliances, since it is impossible to s
chronize the external force~described by a single variable!
with a state of a system of several particles described
multidimensional phase space. Thus, either these part
must be connected in such a way that they build a mac
scopic system described by a single effective variable, or
7-3
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I. M. SOKOLOV PHYSICAL REVIEW E 63 021107
triggering must take place when a considerable amoun
particles gather in the vicinity of the active center.

IV. OPERATION UNDER NOISY CONDITIONS:
SIZE VS TEMPERATURE

The resonant character of the reversible mode of op
tion makes it very sensitive to perturbations, e.g., to the th
mal noise. Thus, for achieving ideal efficiencies, the syst
must be taken to be cold or macroscopic. In what follows
make some estimates, how cold or how macroscopic it ha
be.

Imagine a particle situated att50 at a lower cusp of the
saw tooth,x50. Statistical fluctuations connected with the
mal motion lead to the fact that during the time necessary
a deterministic trajectory to pass the apex of potential ax
5a, in approximately one-half of all realizations, the partic
still does not reach the apex, so that half of the trajectories
not contribute to useful work at all. In the other half of th
realizations the particle has already passed the apex, so t
moves with nonzero velocity and contributes to losses.

Let us vary the protocol slightly in a way that warran
that a large amount of particles crosses the apex of the
tential when the force is showing in the correct direction.
the other hand, the mean-square velocity of the particles
be kept as small as possible to reduce losses. In orde
increase the probability that the particle starting at z
crosses the apex during the time the force is showing, sa
the right, let us increaset1 by the amountDt necessary to
guarantee crossing the top even when the distribution of
particle’s position gets broadened by diffusion. Let us co
sider a ratchet whose asymmetry factore is not extreme~not
too near to zero or unity!, so that both slopes are of the sam
order of magnitude,uF(x)u.U/L. The lengths of both side
are of the order of magnitude ofL. During the time t1
5a/v1 of travel along the left part of the saw tooth with
constant velocityv1, the distribution of the particle’s posi
tions broadens to the widthW.ADt1. Thus, waiting an ad-
ditional timeDt.W/v1 assures that the apex will be cross
in almost all realizations. If we start from a well-localize
situation, then Dt.ADa/v1/v15ADav1

23/2. Having
crossed the apex the particles slide along the steep part o
saw tooth with the velocityv f.mF.mU/L. The overall
losses during the first half-period of outer force are of
order ofv1

2t1 /m1v f
2Dt/m;v1a/m1v f

2ADav1
23/2/m . After

most of the particles have passed the apex, the outer fie
switched to the opposite direction, and the particles m
along the other side of the saw tooth with small velocityv2.
Let us takev1 andv2 to be of the same order of magnitud
v1.v2.v. For the overall losses we get:Q.BvL/m
1CmU2L23/2D1/2v23/2 ~whereB andC are some numerica
factors depending on the form of the ratchet!, which expres-
sion is minimized underv;mU4/5u1/5L1/5. This leads by the
order of magnitude toQ.U4/5u1/5, while the useful work is
of the order ofA5 f 0L.U, so that

12h.~U/u!21/5. ~13!
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Thus, the way to increase the efficiency of the system~i.e., to
make Q small compared toA) is to takeU/u@1, i.e., to
make the system macroscopic or cold. Note that if the typ
value of the external field is given, the saw-tooth heightU
can be made large compared tou by introducing flat, long
steps, thus leading to high efficiencies. On the other ha
the dependence ofh on size or temperature is weak~follows
a power law with a very small exponent of 1/5! so that the
high efficiencies can be only achieved on rather macrosco
scales. Note also that at given size and temperature
smallest losses are achieved under finite velocity, i.e. un
the finite-timemode of operation. The typical period of th
field will scale ast;L/v;m21L4/5u21/5U24/5 and diverges
underu→0 or L→`.

We have discussed the situation when at the beginnin
the period the particles were localized at the lower cusp o
saw tooth, nearx50. Thus, in order to allow for periodic
operation, one has to give the particles enough time to col
into a narrow region near the bottom of the potential af
performing the cycle of operation~which corresponds to a
period of the external field!. To do this one can add to th
time necessary for making the way from the top to the b
tom of the potential an additional amount of time necess
to thermalize, and to reduce the state to its initial width. F
example, one can add at the end of each period an amou
time t0 during which the see-saw force is switched to ze
Then each new period will start from a distribution of pa
ticles localized in a spatial domain of widthW1;(u/U)L,
centered atx'0. The magnitude of the maximal efficienc
achieved under this procedure is still given by Eq.~13!.

V. CONCLUSIONS

Driven ratchets belong to the class of strongly nonline
and strongly nonequilibrium thermodynamical systems,
that the problem of optimizing their efficiencies is n
simple. We have considered the simplest situation of a c
or macroscopic ratchet and discussed its efficiency under
ferent conditions. Since any finite-velocity mode of ope
tion leads to inevitable losses, the highest efficiencies
achieved in quasistatic regime. We have shown that e
ciency of a ratchet as a rectifier, i.e., a device transform
an adiabatically slowly changing outer field with zero me
into a continuous directed motion, is bounded by some va
hmax depending on the geometry of the ratchet and the fo
of the outer force. For ratchets consisting of extremely st
and of almost flat partshmax→1, the system approaches ide
efficiency in the irreversible mode of operation. On the oth
hand, we have also shown, that for a wide class of~nonran-
dom! protocols of the outer force a reversible mode of o
eration is possible, under which the ideal efficiency ofh
51 is also achieved. This mode corresponds to a quasis
but not adiabatic operation. It is worth noting that such
synchronized ratchet resembles much more a w
constructed engine, than an appliance extracting work fro
noise; in macroscopic systems high efficiencies of revers
operation are preserved also at elevated temperatures.
7-4
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APPENDIX A: THE VOLT-AMPERE CHARACTERISTICS
OF A RATCHET

In an adiabatic regime the currentI through the ratchet is
given by a stationary solution of the Fokker-Planck equati
Eq. ~2!:

D
dp~x!

dx
1mp~x!

d

dx
U~x!52I , ~A1!

with D5mu. The formal solution of this equation reads

p~x!5exp@2U~x!/u#

3Fp~0!2~ I /mu!E
0

x

exp„U~x8!/u…dx8G . ~A2!

The currentI and the integration constantp(0) follow then
from the additional conditions representing the periodic
p(L)5p(0) and the overall normalization*0

Lp(x)dx51,
leading to

I 5muF exp2U~L !/u

exp2U~L !/u21 S E
0

L

dx8 exp2U~x8!/u D
3S E

0

L

dx8 expU~x8!/u D 2E
0

L

dx8 exp2U~x8!/u

3E
0

x8
dx9 expU~x9!/uG21

. ~A3!

The solution for the piecewise-linear potential, Eq.~3!, is
given by the following expression:

mI 215
L2a

f 1V/~L2a!
1

a

f 2V/a

1uH exp$2@V1 f ~L2a!#/u%21

@ f 1V/~L2a!#2

2
exp@2~V2 f a!/u#21

~ f 2V/a!2 J
1uH exp@2~V2 f a!/u#21

f 2V/a

2
exp$2@V1 f ~L2a!#/u%21

f 1V/~L2a! J 2

3$exp@2~V2 f a!/u#

2exp~2@V1 f ~L2a!#/u!%21. ~A4!
02110
y
28
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For u→0 one of the exponential terms is positive and lar
for f .V/a and for f ,2V/(L2a), and both of them tend to
zero for 2V/(L2a), f ,V/a, in which case the curren
vanishes. Thus, in this limiting case, Eq.~4! follows. Note
that the same limiting behavior emerges when, keeping
form of the ratchet constant, one increases its size in a
that bothV/a andV/(L2a) stay constant.

APPENDIX B: THE BEST PROTOCOL FOR A GIVEN
RATCHET

Let us discuss the procedure of finding good protocols
reversible operation for a given ratchet potential of gene
form. Let us fix some differentiable, monotonously growin
function j(t), 0<t<1, so thatj(0)50 andj(1)51. Note
that under these conditions an inverse functiont(j), exists,
which is also a monotonously growing, differentiable fun
tion. Let us now considerj as the particle’s relative position
within the period of potentialL andt as the reduced time, s
that x(tT)5Lj(t). Let us now look for a protocol that re
alizes the correspondingx(t) motion, and increase the perio
of the field. From Eq.~11! one then gets

f ~Tt!52F@Lj~t!#2 f 01
L

mT

dj

dt
. ~B1!

Equation ~B1! allows finding good protocols for a give
ratchet or good ratchets for given protocol. Requiring t
zero mean value of the see-saw force one gets

f 052E
0

1

F@Lj~t!#dt1
L

mT
5

L

mT
2E

0

1

F~Lj!
dt

dj
dj. ~B2!

Since the positive work requiresf 0,0, each protocol, for
which

E
0

1

F~Lj!
dt

dj
dj.0 ~B3!

tends to be a good one when performed slowly enou
Since the losses areQ5m21*0

Tv2(t)dt, and sincev(t)
5(L/T)j8(t/T), one has

Q5m21
L2

T E
0

1

@j8~t!#2 dt. ~B4!

The corresponding integral is supposed to converge

k5E
0

1

@j8~t!#2 dt,`. ~B5!

The exact behavior of this function is not very importan
The efficiency of the corresponding engine will then be

h5
u f 0u

u f 0u1kmL/T
. ~B6!
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which tends to unity when the period of the external for
grows. Thus, each reversible functionj(t) fulfilling Eqs.
~B3! and ~B5! delivers a good protocol for a reversible o
eration.

For example, let us take an arbitrary positiv
monotonously increasing bounded functiong(x). Then
takingt(j)5*0

jg@F(Lz)#dz/*0
1g@F(Lz)#dz guarantees tha

*0
1F(Lj) dt/dj dj.0, since the regions whereF(Lj) is
. E

02110
,

positive get in the integral the higher weight than tho
where it is negative and since*0

1F(Lj)dj50. This class of
protocols does not cover the whole set of possible protoc
since many other protocols, like piecewise-linear functio
t(j)5a1bQ@F(Lj)#j ~wherea,b.0, andQ is a Heavi-
side step-function! will also lead eventually to an ideal mod
of operation. A protocol for the piecewise-linear ratchet d
cussed in Sec. III corresponds just to this class.
.
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